If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+40+24
We move all terms to the left:
0-(-16t^2+40+24)=0
We add all the numbers together, and all the variables
-(-16t^2+40+24)=0
We get rid of parentheses
16t^2-40-24=0
We add all the numbers together, and all the variables
16t^2-64=0
a = 16; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·16·(-64)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*16}=\frac{-64}{32} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*16}=\frac{64}{32} =2 $
| -7x^2+6x=0 | | x+2.1=-8.9 | | 2(t+-14)=-12 | | (5x+17)+(9x-5)=180 | | 3x(x-3)=10x^2-15x | | 4x+1436=9874 | | 2x²-20x+16=0 | | (2n+3)^2=0 | | 1/2x-3=1/6x+1 | | n^2+26n+144=0 | | -3(v+7)=7v+49 | | 5-3y=8+4y | | 12=w-|-7 | | 1/4x+18x=x | | 4u-2=-6u+8 | | 33+1.3c=66 | | 2x(x-3)=9x^2-8x | | (7x-6)+90+(2x+15)=180 | | 10-4x=2-6x | | 42=7+z.5 | | 4x+2=5x-15/19 | | 17+w.3=45 | | 3/x-8=91 | | 10-2/3r=52 | | 9x-14=11x+12 | | ^^u-8=^^43-2u | | 49=10+p.5 | | 3x-2(1-x)=2(3x-2) | | (10x+4)=(12x-26) | | (x^2+16x+64)-(x+8)(x-4)=0 | | 12=g.9 | | 3c+19=22 |